Search results
Results from the WOW.Com Content Network
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A reflecting telescope (also called a reflector) is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic ...
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.: You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work
Star Diagonal: Used to change the angle of the light coming out of a telescope, for easier viewing. Herschel Wedge: Similar to a star diagonal with a wedge-shaped unsilvered prism reflector that reduces incoming light by up to 95% for solar viewing. Coma corrector a correcting lens used to reduce coma distortion in fast reflecting telescopes.
Diagram of the lightpath through a Gregorian telescope. The Gregorian telescope is a type of reflecting telescope designed by Scottish mathematician and astronomer James Gregory in the 17th century, and first built in 1673 by Robert Hooke. James Gregory was a contemporary of Isaac Newton, and both often worked simultaneously on similar projects.
The first of these was the Hamiltonian telescope patented by W. F. Hamilton in 1814. The Schupmann medial telescope designed by German optician Ludwig Schupmann near the end of the 19th century placed the catadioptric mirror beyond the focus of the refractor primary and added a third correcting/focusing lens to the system.
Newtonian telescope design. A Newtonian telescope is composed of a primary mirror or objective, usually parabolic in shape, and a smaller flat secondary mirror.The primary mirror makes it possible to collect light from the pointed region of the sky, while the secondary mirror redirects the light out of the optical axis at a right angle so it can be viewed with an eyepiece.
The telescopes shown on this comparison chart are listed below, ordered in each sub-section by (effective) mirror/lens area, low to high, and then by actual/planned first light date, old to new. The "present-day" status is given as of the beginning of 2024. See also List of largest optical reflecting telescopes. Largest refractors (for comparison):