enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radial velocity - Wikipedia

    en.wikipedia.org/wiki/Radial_Velocity

    The radial speed or range rate is the temporal rate of the distance or range between the two points. It is a signed scalar quantity, formulated as the scalar projection of the relative velocity vector onto the LOS direction. Equivalently, radial speed equals the norm of the radial velocity, modulo the sign. [a]

  3. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Figure 1: Velocity v and acceleration a in uniform circular motion at angular rate ω; the speed is constant, but the velocity is always tangential to the orbit; the acceleration has constant magnitude, but always points toward the center of rotation.

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  5. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    The maximum horizontal distance travelled by the projectile, neglecting air resistance, can be calculated as follows: [1] = ⁡ (⁡ + ⁡ +) where d is the total horizontal distance travelled by the projectile.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  8. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.

  9. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    The speed (or the magnitude of velocity) relative to the centre of mass is constant: [1]: 30 = = where: , is the gravitational constant, is the mass of both orbiting bodies (+), although in common practice, if the greater mass is significantly larger, the lesser mass is often neglected, with minimal change in the result.