Search results
Results from the WOW.Com Content Network
Figures 2-5 further illustrate construction of Bode plots. This example with both a pole and a zero shows how to use superposition. To begin, the components are presented separately. Figure 2 shows the Bode magnitude plot for a zero and a low-pass pole, and compares the two with the Bode straight line plots.
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
In the diagram, P is a dynamical process that has a transfer function P(s). The controller, C, has the transfer function C(s). The controller attempts to cause the process output, y, to track the reference input, r. Disturbances, d, and measurement noise, n, may cause undesired deviations of the output. Loop gain is defined by L(s) = P(s)C(s).
The Warburg diffusion element is an equivalent electrical circuit component that models the diffusion process in dielectric spectroscopy. That element is named after German physicist Emil Warburg . A Warburg impedance element can be difficult to recognize because it is nearly always associated with a charge-transfer resistance (see charge ...
It is a historical irony that Hendrik Wade Bode, the man who helped develop the robot weapons that brought down the Nazi V-1 flying bombs over London during World War II, was actually serving in the same committee and sitting at the same table as Wernher von Braun who worked on the development of the V-1 and was the head of the team which ...
The internal state variables are the smallest possible subset of system variables that can represent the entire state of the system at any given time. [13] The minimum number of state variables required to represent a given system, , is usually equal to the order of the system's defining differential equation, but not necessarily.
The flow across the cells is determined based on μ(k) and λ(k), two monotonic functions that uniquely define the fundamental diagram as shown in Figure 1. The density of the cells is updated based on the conservation of inflows and outflows. Thus, the flow and density are derived as: Where: and represent density and flow in cell i at time t.
In engineering, a transfer function (also known as system function [1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2] [3] [4] It is widely used in electronic engineering tools like circuit simulators and control systems.