enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.

  3. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...

  4. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus

  5. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    When longitude spans 2 π radians and latitude spans π radians, the solid angle is that of a sphere. A latitude-longitude rectangle should not be confused with the solid angle of a rectangular pyramid. All four sides of a rectangular pyramid intersect the sphere's surface in great circle arcs. With a latitude-longitude rectangle, only lines of ...

  6. Volume element - Wikipedia

    en.wikipedia.org/wiki/Volume_element

    Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….

  7. Volume - Wikipedia

    en.wikipedia.org/wiki/Volume

    On 7 April 1795, the metric system was formally defined in French law using six units. Three of these are related to volume: the stère (1 m 3) for volume of firewood; the litre (1 dm 3) for volumes of liquid; and the gramme, for mass—defined as the mass of one cubic centimetre of water at the temperature of melting ice. [10]

  8. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex": =, where B 1 and B 2 are the base and top areas, and h 1 and h 2 are the perpendicular heights from the apex to the base and top planes. Considering that

  9. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The area of a shape can be measured by comparing the shape to squares of a fixed size. [2] In the International System of Units (SI), the standard unit of area is the square metre (written as m 2), which is the area of a square whose sides are one metre long. [3] A shape with an area of three square metres would have the same area as three such ...