Search results
Results from the WOW.Com Content Network
For many practical problems, the detailed Bode plots can be approximated with straight-line segments that are asymptotes of the precise response. The effect of each of the terms of a multiple element transfer function can be approximated by a set of straight lines on a Bode plot. This allows a graphical solution of the overall frequency ...
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.
A straight-line approximation of its Bode plot when normalized with = and =-is: For the above plot: Below ω 1 {\displaystyle \omega _{1}} , the circuit attenuates, and well below ω 1 {\displaystyle \omega _{1}} acts like a differentiator.
The magnitude axis is in [Decibel] (dB). The phase axis is in either degrees or radians. The frequency axes are in a [logarithmic scale]. These are useful because for sinusoidal inputs, the output is the input multiplied by the value of the magnitude plot at the frequency and shifted by the value of the phase plot at the frequency.
To enable them to look at this data in a more simplified form vibration analysts or machinery diagnostic engineers have adopted a number of mathematical plots to show machine problems and running characteristics, these plots include the bode plot, the waterfall plot, the polar plot and the orbit time base plot amongst others.
Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.
Bode was one of the great engineering philosophers of his era. [3] Long respected in academic circles worldwide, [4] [5] he is also widely known to modern engineering students mainly for developing the asymptotic magnitude and phase plot that bears his name, the Bode plot.
The Bode Plot wiki page says that Bode should be pronunced as "bod'-duh". But I have always heard it pronounced as "bo-dee", and I can't find any other sources on the web that support "bod'-duh". The sources I find are: bo-day - - from the UK; bow-day - Boady - BO-dee - boh dee - bodee - boh dee -