Search results
Results from the WOW.Com Content Network
The dynamical theory of diffraction considers the wave field in the periodic potential of the crystal and takes into account all multiple scattering effects. Unlike the kinematic theory of diffraction which describes the approximate position of Bragg or Laue diffraction peaks in reciprocal space , dynamical theory corrects for refraction, shape ...
Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.
The Talbot effect is a diffraction effect first observed in 1836 by Henry Fox Talbot. [1] When a plane wave is incident upon a periodic diffraction grating, the image of the grating is repeated at regular distances away from the grating plane. The regular distance is called the Talbot length, and the repeated images are called self images or ...
Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).
Diffraction geometry, showing aperture (or diffracting object) plane and image plane, with coordinate system. If the aperture is in x ′ y ′ plane, with the origin in the aperture and is illuminated by a monochromatic wave, of wavelength λ, wavenumber k with complex amplitude A(x ′,y ′), and the diffracted wave is observed in the unprimed x,y-plane along the positive -axis, where l,m ...
A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.
A geometrical arrangement used in deriving the Kirchhoff's diffraction formula. The area designated by A 1 is the aperture (opening), the areas marked by A 2 are opaque areas, and A 3 is the hemisphere as a part of the closed integral surface (consisted of the areas A 1, A 2, and A 3) for the Kirchhoff's integral theorem.
In practice, however, this approach causes more problems than it solves because zero GVD unacceptably amplifies other nonlinear effects (such as four-wave mixing). Another possible option is to use soliton pulses in the regime of negative dispersion, a form of optical pulse which uses a nonlinear optical effect to self-maintain its shape.