Search results
Results from the WOW.Com Content Network
A pilus (Latin for 'hair'; pl.: pili) is a hair-like cell-surface appendage found on many bacteria and archaea. [1] The terms pilus and fimbria (Latin for 'fringe'; plural: fimbriae ) can be used interchangeably, although some researchers reserve the term pilus for the appendage required for bacterial conjugation .
Pili are similar in structure to fimbriae but are much longer and present on the bacterial cell in low numbers. Pili are involved in the process of bacterial conjugation where they are called conjugation pili or "sex pili". Type IV pili (non-sex pili) also aid bacteria in gripping surfaces.
Bacterial gliding is a process of motility whereby a bacterium can move under its own power. Generally, the process occurs whereby the bacterium moves along a surface in the general direction of its long axis. [ 5 ]
P fimbriae are large, linear structures projecting from the surface of the bacterial cell. With lengths of 1-2um, the pili can be larger than the diameter of the bacteria itself. [4] The main body of the fimbriae is composed of approx. 1000 copies of the major fimbrial subunit protein PapA, forming a helical rod. [5]
The Pilus subunits polymerise via a non-covalent interaction to form the mature pilus which consists of an adhesive tip, helical body and an usher bound base. The P-pilus (pap) system is one of the best characterised and is shown below. [2] A schematic overview of the pap chaperone-usher system showing all subunits and their organisation.
A fimbria (plural fimbriae also known as a pilus, plural pili) is a short, thin, hair-like filament found on the surface of bacteria. Fimbriae are formed of a protein called pilin ( antigenic ) and are responsible for the attachment of bacteria to specific receptors on human cells ( cell adhesion ).
The bacterial type IV secretion system, also known as the type IV secretion system or the T4SS, is a secretion protein complex found in gram negative bacteria, gram positive bacteria, and archaea. It is able to transport proteins and DNA across the cell membrane. [1] The type IV secretion system is just one of many bacterial secretion systems.
2.The Hfr cell forms a pilus and attaches to a recipient F- cell. 3.A nick in one strand of the Hfr cell's chromosome is created. 4.DNA begins to be transferred from the Hfr cell to the recipient cell while the second strand of its chromosome is being replicated. 5.The pilus detaches from the recipient cell and retracts.