Search results
Results from the WOW.Com Content Network
Notice that the actual constraint graph representing this problem must contain two edges between X and Y since C2 is undirected but the graph representation being used by AC-3 is directed. AC-3 solves the problem by first removing the non-even values from of the domain of X as required by C1, leaving D(X) = { 0, 2, 4 }. It then examines the ...
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.
The AC-3 algorithm improves over this algorithm by ignoring constraints that have not been modified since they were last analyzed. In particular, it works on a set of constraints that initially contains all constraints; at each step, it takes a constraint and enforces arc consistency; if this operation may have produced a violation of arc ...
Constraints with one, two, or more variables are called unary, binary, or higher-order constraints. The number of variables in a constraint is called its arity. The hidden transformation replaces each constraint with a new, hidden variable. The hidden transformation converts an arbitrary constraint satisfaction problem into a binary one.
Dolby AC-3, Dolby Digital audio codec; AC-3 algorithm (Arc Consistency Algorithm 3), one of a series of algorithms used for the solution of constraint satisfaction problems (35414) 1998 AC3, a minor planet; AC-3, an IEC utilization category; Ambedkar Community Computing Center (AC3)
In artificial intelligence and operations research, a Weighted Constraint Satisfaction Problem (WCSP), also known as Valued Constraint Satisfaction Problem (VCSP), is a generalization of a constraint satisfaction problem (CSP) where some of the constraints can be violated (according to a violation degree) and in which preferences among solutions can be expressed.
In some applications and programming languages, notably Microsoft Excel, PlanMaker (and other spreadsheet applications) and the programming language bc, unary operations have a higher priority than binary operations, that is, the unary minus has higher precedence than exponentiation, so in those languages −3 2 will be interpreted as (−3) 2 ...
That is why this problem required T to be written in unary. If a number T is written as a binary number (a string of n ones and zeros, where n = log T), then the obvious sequential algorithm can take time 2 n. On the other hand, if T is written as a unary number (a string of n ones, where n = T), then it only takes time n.