Search results
Results from the WOW.Com Content Network
Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently. Formally, a deterministic algorithm computes a mathematical function ; a function has a unique value for any input in its domain , and the algorithm is a process that ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Typical examples of model-free algorithms include Monte Carlo (MC) RL, SARSA, and Q-learning. Monte Carlo estimation is a central component of many model-free RL algorithms. The MC learning algorithm is essentially an important branch of generalized policy iteration, which has two periodically alternating steps: policy evaluation (PEV) and ...
Pronounced "A-star". A graph traversal and pathfinding algorithm which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. abductive logic programming (ALP) A high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some ...
Record linkage (also known as data matching, data linkage, entity resolution, and many other terms) is the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, and databases).
This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased die, a casino roulette, or the first card of a well-shuffled deck.
A step-wise schematic illustrating a generic Michigan-style learning classifier system learning cycle performing supervised learning. Keeping in mind that LCS is a paradigm for genetic-based machine learning rather than a specific method, the following outlines key elements of a generic, modern (i.e. post-XCS) LCS algorithm.
The systems studied in chaos theory are deterministic. If the initial state were known exactly, then the future state of such a system could theoretically be predicted. However, in practice, knowledge about the future state is limited by the precision with which the initial state can be measured, and chaotic systems are characterized by a strong dependence on the initial condit