Search results
Results from the WOW.Com Content Network
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90 ° , then ℓ = r √2 , where ℓ is the length of the chord, and r is the radius of the circle.
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.
Any straight line segment connecting two points on a circle or ellipse is called a chord. Any chord in a circle which has no longer chord is called a diameter, and any segment connecting the circle's center (the midpoint of a diameter) to a point on the circle is called a radius.
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
Example: The length of the chord subtending a (109 + 1 / 2 )° arc is approximately 98. A chord of a circle is a line segment whose endpoints are on the circle. Ptolemy used a circle whose diameter is 120 parts.
Chord diagrams are conventionally visualized by arranging the objects in their order around a circle, and drawing the pairs of the matching as chords of the circle. The number of different chord diagrams that may be given for a set of cyclically ordered objects is the double factorial ()!!. [1] There is a Catalan number of chord diagrams on a ...