Search results
Results from the WOW.Com Content Network
Thermally stimulated current (TSC) spectroscopy (not to be confused with thermally stimulated depolarization current) is an experimental technique which is used to study energy levels in semiconductors or insulators (organic or inorganic). Energy levels are first filled either by optical or electrical injection usually at a relatively low ...
It can be used to measure the thermally stimulated depolarization of molecules within a material. One method of doing so is to place the material between two electrodes, cool the material in the presence of an external electric field, remove the field once a desired temperature has been reached, and measure the current between the electrodes as ...
Electrons are affected by two thermodynamic forces [from the charge, ∇(E F /e c) where E F is the Fermi level and e c is the electron charge and temperature gradient, ∇(1/T)] because they carry both charge and thermal energy, and thus electric current j e and heat flow q are described with the thermoelectric tensors (A ee, A et, A te, and A ...
A heat current or thermal current is a kinetic exchange rate between molecules, relative to the material in which the kinesis occurs. It is defined as the net rate of flow of heat . The SI unit of heat current is the watt , which is the flow of heat across a surface at the rate of one Joule per second.
In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density [1], heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m 2). It has both a direction and a magnitude, and so it is a vector quantity.
Taylor–Couette flow; ... Thermal laser stimulation; Thermal light; Thermal loop; ... Thermally stimulated current spectroscopy; Thermionic emission;
Laser stimulation highlights differences in thermal characteristics between areas containing defects and areas which are defect-free. As the laser locally heats a defective area on a metal line which is carrying a current , the resulting resistance changes can be detected by monitoring the input current to the device.
Closeup of the filament in a low pressure mercury gas-discharge lamp showing white thermionic emission mix coating on the central portion of the coil. Typically made of a mixture of barium, strontium and calcium oxides, the coating is sputtered away through normal use, eventually resulting in lamp failure.