enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.

  3. Lattice of subgroups - Wikipedia

    en.wikipedia.org/wiki/Lattice_of_subgroups

    Lattice-theoretic information about the lattice of subgroups can sometimes be used to infer information about the original group, an idea that goes back to the work of Øystein Ore (1937, 1938). For instance, as Ore proved , a group is locally cyclic if and only if its lattice of subgroups is distributive .

  4. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  5. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms ...

  6. Unimodular lattice - Wikipedia

    en.wikipedia.org/wiki/Unimodular_lattice

    In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E 8 lattice and the Leech lattice are two famous examples.

  7. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.

  8. Correspondence theorem - Wikipedia

    en.wikipedia.org/wiki/Correspondence_theorem

    More generally, there is a monotone Galois connection (,) between the lattice of subgroups of (not necessarily containing ) and the lattice of subgroups of /: the lower adjoint of a subgroup of is given by () = / and the upper adjoint of a subgroup / of / is a given by (/) =.

  9. Complete lattice - Wikipedia

    en.wikipedia.org/wiki/Complete_lattice

    An example is the Knaster–Tarski theorem, which states that the set of fixed points of a monotone function on a complete lattice is again a complete lattice. This is easily seen to be a generalization of the above observation about the images of increasing and idempotent functions.