Search results
Results from the WOW.Com Content Network
In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. [ 1 ] [ 2 ] This is in contrast to a floating-point unit (FPU), which operates on floating point numbers.
The 74181 is a 4-bit slice arithmetic logic unit (ALU), implemented as a 7400 series TTL integrated circuit. Introduced by Texas Instruments in February 1970, [1] it was the first complete ALU on a single chip. [2] It was used as the arithmetic/logic core in the CPUs of many historically significant minicomputers and other devices.
A von Neumann architecture scheme. The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on the First Draft of a Report on the EDVAC, [1] written by John von Neumann in 1945, describing designs discussed with John Mauchly and J. Presper Eckert at the University of Pennsylvania's Moore School of Electrical Engineering.
An adder, or summer, [1] is a digital circuit that performs addition of numbers. In many computers and other kinds of processors, adders are used in the arithmetic logic units (ALUs).
The control unit (CU) is a component of the CPU that directs the operation of the processor. It tells the computer's memory, arithmetic and logic unit and input and output devices how to respond to the instructions that have been sent to the processor. It directs the operation of the other units by providing timing and control signals.
A data path is a collection of functional units such as arithmetic logic units (ALUs) or multipliers that perform data processing operations, registers, and buses. [1] Along with the control unit it composes the central processing unit (CPU). [1] A larger data path can be made by joining more than one data paths using multiplexers.
Adders are a part of the core of an arithmetic logic unit (ALU). The control unit decides which operations an ALU should perform (based on the op code being executed) and sets the ALU operation. The D input to the adder–subtractor above would be one such control line from the control unit.
The sequencer then counts, and the count addresses the memory or combinational logic machine that contains the microprogram. The bits from the microprogram control the arithmetic logic unit, memory and other parts of the computer, including the microsequencer itself. In this way, the complex task of designing the controls of a computer is ...