enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. B-spline - Wikipedia

    en.wikipedia.org/wiki/B-spline

    A B-spline function is a combination of flexible bands that is controlled by a number of points that are called control points, creating smooth curves. These functions are used to create and manage complex shapes and surfaces using a number of points. B-spline function and Bézier functions are applied extensively in shape optimization methods. [5]

  3. Spline wavelet - Wikipedia

    en.wikipedia.org/wiki/Spline_wavelet

    The cardinal B-splines are defined recursively starting from the B-spline of order 1, namely (), which takes the value 1 in the interval [0, 1) and 0 elsewhere. Computer algebra systems may have to be employed to obtain concrete expressions for higher order cardinal B-splines.

  4. Spline interpolation - Wikipedia

    en.wikipedia.org/wiki/Spline_interpolation

    In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the ...

  5. Spline (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spline_(mathematics)

    In mathematics, a spline is a function defined piecewise by polynomials. In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while avoiding Runge's phenomenon for higher degrees.

  6. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...

  7. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    The geometry of a single bicubic patch is thus completely defined by a set of 16 control points. These are typically linked up to form a B-spline surface in a similar way as Bézier curves are linked up to form a B-spline curve. Simpler Bézier surfaces are formed from biquadratic patches (m = n = 2), or Bézier triangles.

  8. Non-uniform rational B-spline - Wikipedia

    en.wikipedia.org/wiki/Non-uniform_rational_B-spline

    Non-uniform rational basis spline (NURBS) is a mathematical model using basis splines (B-splines) that is commonly used in computer graphics for representing curves and surfaces. It offers great flexibility and precision for handling both analytic (defined by common mathematical formulae ) and modeled shapes .

  9. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...