Search results
Results from the WOW.Com Content Network
The difference of two squares can also be used as an arithmetical short cut. If two numbers (whose average is a number which is easily squared) are multiplied, the difference of two squares can be used to give you the product of the original two numbers. For example: = (+)
If K is a finite field of odd characteristic the absolute points also form a quadric, but if the characteristic is even the absolute points form a hyperplane (this is an example of a pseudo polarity). Under any duality, the point P is called the pole of the hyperplane P ⊥, and this hyperplane is called the polar of the point P. Using this ...
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
An example of self-dual category is the category of Hilbert spaces. [19] Many category-theoretic notions come in pairs in the sense that they correspond to each other while considering the opposite category. For example, Cartesian products Y 1 × Y 2 and disjoint unions Y 1 ⊔ Y 2 of sets are dual to each other in the sense that
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.
For example, in elementary arithmetic, one has (+) = + (). Therefore, one would say that multiplication distributes over addition . This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers , polynomials , matrices , rings , and fields .
For example, a polynomial of degree n has a pole of degree n at infinity. The complex plane extended by a point at infinity is called the Riemann sphere. If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its ...