Search results
Results from the WOW.Com Content Network
The arithmetic intensity, also referred to as operational intensity, [3] [7] is the ratio of the work to the memory traffic : [1] = and denotes the number of operations per byte of memory traffic. When the work W {\displaystyle W} is expressed as FLOPs , the resulting arithmetic intensity I {\displaystyle I} will be the ratio of floating point ...
time (Unix) - can be used to determine the run time of a program, separately counting user time vs. system time, and CPU time vs. clock time. [1] timem (Unix) - can be used to determine the wall-clock time, CPU time, and CPU utilization similar to time (Unix) but supports numerous extensions.
In engineering, a bottleneck is a phenomenon by which the performance or capacity of an entire system is severely limited by a single component. The component is sometimes called a bottleneck point. The term is metaphorically derived from the neck of a bottle, where the flow speed of the liquid is limited by its neck.
A von Neumann architecture scheme. The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on the First Draft of a Report on the EDVAC, [1] written by John von Neumann in 1945, describing designs discussed with John Mauchly and J. Presper Eckert at the University of Pennsylvania's Moore School of Electrical Engineering.
In software engineering, a bottleneck occurs when the capacity of an application or a computer system is limited by a single component, like the neck of a bottle slowing down the overall water flow. The bottleneck has the lowest throughput of all parts of the transaction path. [1] PC Bottleneck Calculator
The final result comes from dividing the number of instructions by the number of CPU clock cycles. The number of instructions per second and floating point operations per second for a processor can be derived by multiplying the number of instructions per cycle with the clock rate (cycles per second given in Hertz) of the processor in question ...
Finally, tasks required of modern computers often emphasize quite different components, so that resolving a bottleneck for one task may not affect the performance of another. For these reasons, upgrading a CPU does not always have a dramatic effect. The concept of being CPU-bound is now one of many factors considered in modern computing ...
Unlike modern CPU designs where different portions of the CPU are dedicated to different sorts of data, an EDGE CPU would normally consist of a single type of ALU-like unit. A desktop user running several different programs at the same time would get just as much parallelism as a scientific user feeding in a single program using floating point ...