Search results
Results from the WOW.Com Content Network
FEATool Multiphysics is a fully integrated physics and PDE simulation environment where the modeling process is subdivided into six steps; preprocessing (CAD and geometry modeling), mesh and grid generation, physics and PDE specification, boundary condition specification, solution, and postprocessing and visualization.
Boundary elements solver: Yes No Yes Existing but without multipole acceleration (not usable for large problems) No Use multiple meshes: Yes including different dimensions and taking account of any transformation. Yes, autorefined from same initial mesh for each variable of a coupled problem
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
Thus, one of the two sets of boundary functions {f 1, f 2} or {g 1, g 2} is redundant, and this implies that a partial differential equation with boundary conditions on a rectangle cannot have arbitrary boundary conditions on the borders, since the conditions at x = x 1, x = x 2 must be consistent with those imposed at y = y 1 and y = y 2.
Using the SAT technique, the boundary conditions of the PDE are imposed weakly, where the boundary values are "pulled" towards the desired conditions rather than exactly fulfilled. If the tuning parameters (inherent to the SAT technique) are chosen properly, the resulting system of ODE's will exhibit similar energy behavior as the continuous ...
One common issue in the Kansa method and symmetric Hermite method, however, is that the numerical solutions at nodes adjacent to boundary deteriorate by one to two orders of magnitude compared with those in central region. The PDE collocation on the boundary (PDECB) [6] effectively remove this shortcoming. However, this strategy requires an ...
The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases ...
The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the solution of hyperbolic partial differential equations based on finite differences. The method can be described as the FTCS (forward in time, centered in space) scheme with a numerical dissipation term of 1/2.