Search results
Results from the WOW.Com Content Network
In solid-state physics, metal-induced gap states are electron states that exist near the surface of a semiconductor due to the presence of a metal on the surface. They have energies that fall within the semiconductor's bandgap thus are forbidden in the bulk of the semiconductor.
The nature of these metal-induced gap states and their occupation by electrons tends to pin the center of the band gap to the Fermi level, an effect known as Fermi level pinning. Thus the heights of the Schottky barriers in metal–semiconductor contacts often show little dependence on the value of the semiconductor or metal work functions, in ...
A band gap is the range in a solid where no electron state can exist. The band gap of insulators is much larger than in semiconductors. Conductors or metals have a much smaller or nonexistent band gap than semiconductors since the valence and conduction bands overlap. Controlling the band gap allows for the creation of desirable electrical ...
The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the conduction band and the valence band; an electron can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass through an intermediate state and transfer momentum to the crystal lattice.
This model includes a dipole layer at the interface between the two semiconductors which arises from electron tunneling from the conduction band of one material into the gap of the other (analogous to metal-induced gap states). This model agrees well with systems where both materials are closely lattice matched [11] such as GaAs/AlGaAs.
Biological engineering is a science-based discipline founded upon the biological sciences in the same way that chemical engineering, electrical engineering, and mechanical engineering [7] can be based upon chemistry, electricity and magnetism, and classical mechanics, respectively.
Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering, and materials science. Biomaterials can be derived either from nature or synthesized in a laboratory using a variety of chemical approaches using metallic components, polymers, bioceramics, or composite materials. They are often intended or adapted ...
The shade follows the Fermi–Dirac distribution (black: all states filled, white: no state filled). In metals and semimetals the Fermi level E F lies inside at least one band. In insulators and semiconductors the Fermi level is inside a band gap ; however, in semiconductors the bands are near enough to the Fermi level to be thermally populated ...