Search results
Results from the WOW.Com Content Network
Water density calculator Archived July 13, 2011, at the Wayback Machine Water density for a given salinity and temperature. Liquid density calculator Select a liquid from the list and calculate density as a function of temperature. Gas density calculator Calculate density of a gas for as a function of temperature and pressure.
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
The term "relative density" (abbreviated r.d. or RD) is preferred in SI, whereas the term "specific gravity" is gradually being abandoned. [3] If a substance's relative density is less than 1 then it is less dense than the reference; if greater than 1 then it is denser than the reference.
vapour density = molar mass of gas / molar mass of H 2 vapour density = molar mass of gas / 2.01568 vapour density = 1 ⁄ 2 × molar mass (and thus: molar mass = ~2 × vapour density) For example, vapour density of mixture of NO 2 and N 2 O 4 is 38.3. Vapour density is a dimensionless quantity. Vapour density = density of gas / density of ...
Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely, multiply by 0.001. Specific volume is inversely proportional to density.
In SI units, number density is measured in m −3, although cm −3 is often used. However, these units are not quite practical when dealing with atoms or molecules of gases, liquids or solids at room temperature and atmospheric pressure, because the resulting numbers are extremely large (on the order of 10 20).
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Parts-per notations may be expressed in terms of any unit of the same measure. For instance, the expansion coefficient of some brass alloy, α = 18.7 ppm/°C, may be expressed as 18.7 ( μm / m )/°C, or as 18.7 (μ in / in )/°C; the numeric value representing a relative proportion does not change with the adoption of a different unit of length.