Search results
Results from the WOW.Com Content Network
The anhydrous material and dihydrate Mn(CH 3 CO 2) 2 ·2H 2 O are coordination polymers. The dihydrate has been characterized by X-ray crystallography. Each Mn(II) center is surrounded by six oxygen centers provided by aquo ligands and acetates. Subunit of the structure of the dihydrate of manganese(II) acetate. [5]
When Cu(OAc) 2 is present, further oxidation to carbocations followed by elimination takes place, leading to the formation of β,γ-unsaturated carbonyl compounds in moderate yields. [9] (4) Aromatic compounds are also useful radical acceptors in manganese(III)-mediated coupling reactions.
Manganese triacetate has been used as a one-electron oxidant.It can oxidize alkenes via addition of acetic acid to form lactones. [3]This process is thought to proceed via the formation of a •CH 2 CO 2 H radical intermediate, which then reacts with the alkene, followed by additional oxidation steps and finally ring closure. [1]
The Cr 2 (OAc) 4 (H 2 O) 2 molecule contains two atoms of chromium, two ligated molecules of water, and four acetate bridging ligands.The coordination environment around each chromium atom consists of four oxygen atoms (one from each acetate ligand) in a square, one water molecule (in an axial position), and the other chromium atom (opposite the water molecule), giving each chromium centre an ...
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Copper(II) acetate, also referred to as cupric acetate, is the chemical compound with the formula Cu(OAc) 2 where AcO − is acetate (CH 3 CO − 2).The hydrated derivative, Cu 2 (OAc) 4 (H 2 O) 2, which contains one molecule of water for each copper atom, is available commercially.
For example, [Ti(H 2 O) 6] 4+ is unknown: the hydrolyzed species [Ti(OH) 2 (H 2 O) n] 2+ is the principal species in dilute solutions. [11] With the higher oxidation states the effective electrical charge on the cation is further reduced by the formation of oxo-complexes.
Enthalpy change of solution in water at 25 °C for some selected compounds [2] Compound ΔH o in kJ/mol; hydrochloric acid: −74.84 ammonium nitrate +25.69 ammonia: −30.50 potassium hydroxide: −57.61 caesium hydroxide: −71.55 sodium chloride +3.87 potassium chlorate +41.38 acetic acid: −1.51 sodium hydroxide: −44.50