Search results
Results from the WOW.Com Content Network
The anhydrous material and dihydrate Mn(CH 3 CO 2) 2 ·2H 2 O are coordination polymers. The dihydrate has been characterized by X-ray crystallography. Each Mn(II) center is surrounded by six oxygen centers provided by aquo ligands and acetates. Subunit of the structure of the dihydrate of manganese(II) acetate. [5]
Manganese triacetate has been used as a one-electron oxidant.It can oxidize alkenes via addition of acetic acid to form lactones. [3]This process is thought to proceed via the formation of a •CH 2 CO 2 H radical intermediate, which then reacts with the alkene, followed by additional oxidation steps and finally ring closure. [1]
When Cu(OAc) 2 is present, further oxidation to carbocations followed by elimination takes place, leading to the formation of β,γ-unsaturated carbonyl compounds in moderate yields. [9] (4) Aromatic compounds are also useful radical acceptors in manganese(III)-mediated coupling reactions.
For example, [Ti(H 2 O) 6] 4+ is unknown: the hydrolyzed species [Ti(OH) 2 (H 2 O) n] 2+ is the principal species in dilute solutions. [11] With the higher oxidation states the effective electrical charge on the cation is further reduced by the formation of oxo-complexes.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
2 CH 3 COOH + Mg(OH) 2 → (CH 3 COO) 2 Mg + 2 H 2 O. Magnesium carbonate suspended in distilled water with 20% acetic acid solution. [8] 2 CH 3 COOH + MgCO 3 → Mg(CH 3 COO) 2 + CO 2 + H 2 O. Reacting metallic magnesium with acetic acid dissolved in dry benzene causes magnesium acetate to form along with the release of hydrogen gas. [9] Mg ...
In the Eglinton reaction Cu 2 (OAc) 4 is used to couple terminal alkynes to give a 1,3-diyne: [13] [14] Cu 2 (OAc) 4 + 2 RC≡CH → 2 CuOAc + RC≡C−C≡CR + 2 HOAc. The reaction proceeds via the intermediacy of copper(I) acetylides, which are then oxidized by the copper(II) acetate, releasing the acetylide radical. A related reaction ...
The compound can be prepared by treating nickel or nickel(II) carbonate with acetic acid: . NiCO 3 + 2 CH 3 CO 2 H + 3 H 2 O → Ni(CH 3 CO 2) 2 ·4 H 2 O + CO 2. The mint-green tetrahydrate has been shown by X-ray crystallography to adopt an octahedral structure, the central nickel centre being coordinated by four water molecules and two acetate ligands. [5]