enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    A (existential second-order) formula is one additionally having some existential quantifiers over second order variables, i.e. …, where is a first-order formula. The fragment of second-order logic consisting only of existential second-order formulas is called existential second-order logic and abbreviated as ESO, as , or even as ∃SO.

  3. Monadic second-order logic - Wikipedia

    en.wikipedia.org/wiki/Monadic_second-order_logic

    In mathematical logic, monadic second-order logic (MSO) is the fragment of second-order logic where the second-order quantification is limited to quantification over sets. [1] It is particularly important in the logic of graphs , because of Courcelle's theorem , which provides algorithms for evaluating monadic second-order formulas over graphs ...

  4. S2S (mathematics) - Wikipedia

    en.wikipedia.org/wiki/S2S_(mathematics)

    However, with free second order variables, not every S2S formula can be expressed in second order arithmetic through just Π 1 1 transfinite recursion (see reverse mathematics). RCA 0 + (schema) {τ: τ is a true S2S sentence} is equivalent to (schema) {τ: τ is a Π 1 3 sentence provable in Π 1 2 -CA 0 }.

  5. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    In the monadic second-order logic of graphs, the variables represent objects of up to four types: vertices, edges, sets of vertices, and sets of edges. There are two main variations of monadic second-order graph logic: MSO 1 in which only vertex and vertex set variables are allowed, and MSO 2 in which all four types of variables are allowed ...

  6. Monadic predicate calculus - Wikipedia

    en.wikipedia.org/wiki/Monadic_predicate_calculus

    The absence of polyadic relation symbols severely restricts what can be expressed in the monadic predicate calculus. It is so weak that, unlike the full predicate calculus, it is decidable—there is a decision procedure that determines whether a given formula of monadic predicate calculus is logically valid (true for all nonempty domains).

  7. Hume's principle - Wikipedia

    en.wikipedia.org/wiki/Hume's_principle

    Hume's principle or HP says that the number of Fs is equal to the number of Gs if and only if there is a one-to-one correspondence (a bijection) between the Fs and the Gs. HP can be stated formally in systems of second-order logic.

  8. Second-order arithmetic - Wikipedia

    en.wikipedia.org/wiki/Second-order_arithmetic

    The (full) second-order induction scheme consists of all instances of this axiom, over all second-order formulas. One particularly important instance of the induction scheme is when φ is the formula " n ∈ X {\displaystyle n\in X} " expressing the fact that n is a member of X ( X being a free set variable): in this case, the induction axiom ...

  9. Courcelle's theorem - Wikipedia

    en.wikipedia.org/wiki/Courcelle's_theorem

    The satisfiability problem for a formula of monadic second-order logic is the problem of determining whether there exists at least one graph (possibly within a restricted family of graphs) for which the formula is true. For arbitrary graph families, and arbitrary formulas, this problem is undecidable.