enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A circle is a shape consisting of all points in a plane ... California Circles in an old Arabic astronomical drawing. ... The formula for the unit circle in taxicab ...

  3. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    In this case the circle with radius zero is a double point, and thus any line passing through it intersects the point with multiplicity two, hence is "tangent". If one circle has radius zero, a bitangent line is simply a line tangent to the circle and passing through the point, and is counted with multiplicity two.

  4. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    Draw the diameter of the circle by joining points and with a straight line ¯. Draw the Mohr Circle . The centre O {\displaystyle O} of the circle is the midpoint of the diameter line A B ¯ {\displaystyle {\overline {AB}}} , which corresponds to the intersection of this line with the σ n {\displaystyle \sigma _{\mathrm {n} }} axis.

  5. Ford circle - Wikipedia

    en.wikipedia.org/wiki/Ford_circle

    In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number p / q {\displaystyle p/q} , expressed in lowest terms, there is a Ford circle whose center is at the point ( p / q , 1 / ( 2 q 2 ) ) {\displaystyle (p/q,1/(2q^{2}))} and whose ...

  6. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have.In geometry, Descartes' theorem states that for every four kissing, or mutually tangent circles, the radii of the circles satisfy a certain quadratic equation.

  7. Midpoint circle algorithm - Wikipedia

    en.wikipedia.org/wiki/Midpoint_circle_algorithm

    The implementations above always draw only complete octants or circles. To draw only a certain arc from an angle to an angle , the algorithm needs first to calculate the and coordinates of these end points, where it is necessary to resort to trigonometric or square root computations (see Methods of computing square roots). Then the Bresenham ...

  8. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Consider the great circle that contains the side BC. This great circle is defined by the intersection of a diametral plane with the surface. Draw the normal to that plane at the centre: it intersects the surface at two points and the point that is on the same side of the plane as A is (conventionally) termed the pole of A and it is denoted by A'.

  9. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The transformation sends the circle to an ellipse by stretching or shrinking the horizontal and vertical diameters to the major and minor axes of the ellipse. The square gets sent to a rectangle circumscribing the ellipse. The ratio of the area of the circle to the square is π /4, which means the ratio of the ellipse to the rectangle is also π /4