Search results
Results from the WOW.Com Content Network
For a first-order PDE, the method of characteristics discovers so called characteristic curves along which the PDE becomes an ODE. [1] [2] Once the ODE is found, it can be solved along the characteristic curves and transformed into a solution for the original PDE.
where is a second-order elliptic operator (implying that must be positive; a case where = + is considered below). A system of partial differential equations for a vector can also be parabolic. For example, such a system is hidden in an equation of the form
The sine-Gordon equation is a second-order nonlinear partial differential equation for a function dependent on two variables typically denoted and , involving the wave operator and the sine of . It was originally introduced by Edmond Bour ( 1862 ) in the course of study of surfaces of constant negative curvature as the Gauss–Codazzi equation ...
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation
The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which a i,j is zero if i ≠ j and is one otherwise, and where b i = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish.
In mathematics, and more precisely, in Functional analysis and PDEs, the Schauder estimates are a collection of results due to Juliusz Schauder (1934, 1937) concerning the regularity of solutions to linear, uniformly elliptic partial differential equations.
In computational physics, the term advection scheme refers to a class of numerical discretization methods for solving hyperbolic partial differential equations.In the so-called upwind schemes typically, the so-called upstream variables are used to calculate the derivatives in a flow field.
In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear terms.They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture.