Search results
Results from the WOW.Com Content Network
The density of gases changes with even slight variations in temperature, while densities of liquid and solids, which are generally thought of as incompressible, will change very little. Specific volume is the inverse of the density of a substance; therefore, careful consideration must be taken account when dealing with situations that involve ...
Though the compression/heating process of solids can be constant temperature , and constant pressure (isobaric), it can not be a constant volume (isochoric), At high P-T, the pressure for the ideal gas is calculated by the force divided by the area, while the pressure for the solid is calculated from bulk modulus (K, or B) and volume at room ...
A vapor can exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the vapor pressure of the liquid (or solid). A supercritical fluid (SCF) is a gas whose temperature and pressure are above the critical temperature and critical pressure respectively. In this state, the distinction between liquid and gas disappears.
This device enables a liquid's density to be measured accurately by reference to an appropriate working fluid, such as water or mercury, using an analytical balance. [citation needed] If the flask is weighed empty, full of water, and full of a liquid whose relative density is desired, the relative density of the liquid can easily be calculated.
The effect of pressure and temperature on the densities of liquids and solids is small. The compressibility for a typical liquid or solid is 10 −6 bar −1 (1 bar = 0.1 MPa) and a typical thermal expansivity is 10 −5 K −1. This roughly translates into needing around ten thousand times atmospheric pressure to reduce the volume of a ...
These three gas laws in combination with Avogadro's law can be generalized by the ideal gas law. Gay-Lussac used the formula acquired from ΔV/V = αΔT to define the rate of expansion α for gases. For air, he found a relative expansion ΔV/V = 37.50% and obtained a value of α = 37.50%/100 °C = 1/266.66 °C which indicated that the value of ...
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).