Search results
Results from the WOW.Com Content Network
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components." [6] ISO 80000-4 further defines linear strain as the "quotient of change in length of an object and its length" and shear strain as the "quotient of parallel displacement of two surfaces of a layer and the thickness of the layer". [6]
Deformation mechanism maps provide a visual tool categorizing the dominant deformation mechanism as a function of homologous temperature, shear modulus-normalized stress, and strain rate. Generally, two of these three properties (most commonly temperature and stress) are the axes of the map, while the third is drawn as contours on the map.
The strain rate can also be expressed by a single number when the material is being subjected to parallel shear without change of volume; namely, when the deformation can be described as a set of infinitesimally thin parallel layers sliding against each other as if they were rigid sheets, in the same direction, without changing their spacing.
This is not true since the actual area will decrease while deforming due to elastic and plastic deformation. The curve based on the original cross-section and gauge length is called the engineering stress–strain curve, while the curve based on the instantaneous cross-section area and length is called the true stress–strain curve. Unless ...
[1]: 58 For example, low-carbon steel generally exhibits a very linear stress–strain relationship up to a well-defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus .
The formulas are organized into tables in a hierarchical format: chapter, table, case, subcase, and each case and subcase is accompanied by diagrams. The main topics of the book include: • The behavior of bodies under stress • Analytical, numerical, and experimental methods • Tension, compression, shear, and combined stress