Search results
Results from the WOW.Com Content Network
File:Sinx x limit proof.svg. ... Printable version; Page information; ... Illustration for the proof lim x->0 sin(x)/x = 1: Date: Unknown date: Source:
For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
Two variants of the topologist's sine curve have other interesting properties. The closed topologist's sine curve can be defined by taking the topologist's sine curve and adding its set of limit points, {(,) [,]}; some texts define the topologist's sine curve itself as this closed version, as they prefer to use the term 'closed topologist's sine curve' to refer to another curve. [1]
Morrie's law is a special trigonometric identity.Its name is due to the physicist Richard Feynman, who used to refer to the identity under that name.Feynman picked that name because he learned it during his childhood from a boy with the name Morrie Jacobs and afterwards remembered it for all of his life.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If is expressed in radians: = = These limits both follow from the continuity of sin and cos. =. [7] [8] Or, in general, =, for a not equal to 0. = =, for b not equal to 0.