Search results
Results from the WOW.Com Content Network
In combinatorial mathematics and theoretical computer science, a (classical) permutation pattern is a sub-permutation of a longer permutation.Any permutation may be written in one-line notation as a sequence of entries representing the result of applying the permutation to the sequence 123...; for instance the sequence 213 represents the permutation on three elements that swaps elements 1 and 2.
For instance, the length-3 patterns of 25314 include all six of the length-3 permutations, so 25314 is a 3-superpattern. No 3-superpattern can be shorter, because any two subsequences that form the two patterns 123 and 321 can only intersect in a single position, so five symbols are required just to cover these two patterns.
Direct sum of permutations; Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted ...
First, the superpermutation of order is split into its individual permutations in the order of how they appeared in the superpermutation. Each of those permutations are then placed next to a copy of themselves with an nth symbol added in between the two copies. Finally, each resulting structure is placed next to each other and all adjacent ...
The permutations that avoid the generalized patterns 12-3, 32-1, 3-21, 1-32, 3-12, 21-3, and 23-1 are also counted by the Bell numbers. [4] The permutations in which every 321 pattern (without restriction on consecutive values) can be extended to a 3241 pattern are also counted by the Bell numbers. [ 5 ]
Permutation patterns (15 P) S. Serialism (2 C, ... Claw-free permutation; Computing the permanent ... Text is available under the Creative Commons Attribution ...
A principal permutation class is a class whose basis consists of only a single permutation. Thus, for instance, the stack-sortable permutations form a principal permutation class, defined by the forbidden pattern 231. However, some other permutation classes have bases with more than one pattern or even with infinitely many patterns. A ...
The growth rate (or Stanley–Wilf limit) of a permutation class is defined as , where a n denotes the number of permutations of length n in the class. Clearly not every positive real number can be a growth rate of a permutation class, regardless of whether it is defined by a single forbidden pattern or a set of forbidden patterns.