enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Names of large numbers - Wikipedia

    en.wikipedia.org/wiki/Names_of_large_numbers

    The name of a number 10 3n+3, where n is greater than or equal to 1000, is formed by concatenating the names of the numbers of the form 10 3m+3, where m represents each group of comma-separated digits of n, with each but the last "-illion" trimmed to "-illi-", or, in the case of m = 0, either "-nilli-" or "-nillion". [17]

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    With the example in view, a number of details can be discussed. The most important is the choice of the representation of the big number. In this case, only integer values are required for digits, so an array of fixed-width integers is adequate. It is convenient to have successive elements of the array represent higher powers of the base.

  4. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    A standardized way of writing very large numbers allows them to be easily sorted in increasing order, and one can get a good idea of how much larger a number is than another one. To compare numbers in scientific notation, say 5×10 4 and 2×10 5 , compare the exponents first, in this case 5 > 4, so 2×10 5 > 5×10 4 .

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...

  6. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  7. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The Fermat test and the Fibonacci test are simple examples, and they are very effective when combined. John Selfridge has conjectured that if p is an odd number, and p ≡ ±2 (mod 5), then p will be prime if both of the following hold: 2 p−1 ≡ 1 (mod p), f p+1 ≡ 0 (mod p), where f k is the k-th Fibonacci number. The first condition is ...

  8. Category:Large numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Large_numbers

    Large numbers in mathematics may be large and finite, like a googol, or the large infinite cardinal numbers which have a subcategory here. Subcategories This category has the following 2 subcategories, out of 2 total.

  9. History of large numbers - Wikipedia

    en.wikipedia.org/wiki/History_of_large_numbers

    Different cultures used different traditional numeral systems for naming large numbers.The extent of large numbers used varied in each culture. Two interesting points in using large numbers are the confusion on the term billion and milliard in many countries, and the use of zillion to denote a very large number where precision is not required.