enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy (or simply the degeneracy) of the level.

  3. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.

  4. Zero-field splitting - Wikipedia

    en.wikipedia.org/wiki/Zero-field_splitting

    In quantum mechanics terminology, the degeneracy is said to be "lifted" by the presence of the magnetic field. In the presence of more than one unpaired electron, the electrons mutually interact to give rise to two or more energy states. Zero-field splitting refers to this lifting of degeneracy even in the absence of a magnetic field.

  5. Ground state - Wikipedia

    en.wikipedia.org/wiki/Ground_state

    Degeneracy occurs whenever there exists a unitary operator that acts non-trivially on a ground state and commutes with the Hamiltonian of the system. According to the third law of thermodynamics , a system at absolute zero temperature exists in its ground state; thus, its entropy is determined by the degeneracy of the ground state.

  6. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    In the case of degenerate energy levels, we can write the partition function in terms of the contribution from energy levels (indexed by j) as follows: =, where g j is the degeneracy factor, or number of quantum states s that have the same energy level defined by E j = E s.

  7. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    In spectroscopy and quantum chemistry, the multiplicity of an energy level is defined as 2S+1, where S is the total spin angular momentum. [1] [2] ...

  8. Pauli exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Pauli_exclusion_principle

    Neutrons are capable of producing an even higher degeneracy pressure, neutron degeneracy pressure, albeit over a shorter range. This can stabilize neutron stars from further collapse, but at a smaller size and higher density than a white dwarf.

  9. Molecular term symbol - Wikipedia

    en.wikipedia.org/wiki/Molecular_term_symbol

    This degeneracy is lifted when spin–orbit interaction is treated to higher order in perturbation theory, but still states with same |M S | are degenerate in a non-rotating molecule. We can speak of a 5 Σ 2 substate, a 5 Σ 1 substate or a 5 Σ 0 substate. Except for the case Ω = 0, these substates have a degeneracy of 2.