Search results
Results from the WOW.Com Content Network
The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Intersection (Euclidean geometry) – Shape formed from points common to other shapes; Intersection graph – Graph representing intersections between given sets; Intersection theory – Branch of algebraic geometry; List of set identities and relations – Equalities for combinations of sets
This article lists some properties of sets of real numbers. The general study of these concepts forms descriptive set theory , which has a rather different emphasis from general topology . Definability properties
The set is called the underlying set of the group, and the operation is called the group operation or the group law. A group and its underlying set are thus two different mathematical objects. To avoid cumbersome notation, it is common to abuse notation by using the same symbol to denote both. This reflects also an informal way of thinking ...
As the definition of a convex set is the case r = 2, this property characterizes convex sets. Such an affine combination is called a convex combination of u 1 , ..., u r . The convex hull of a subset S of a real vector space is defined as the intersection of all convex sets that contain S .