Search results
Results from the WOW.Com Content Network
The hypocycloid is a special kind of hypotrochoid, which is a particular kind of roulette. A hypocycloid with three cusps is known as a deltoid. A hypocycloid curve with four cusps is known as an astroid. The hypocycloid with two "cusps" is a degenerate but still very interesting case, known as the Tusi couple.
A cycloid generated by a rolling circle. In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve.
Designed by Matthew Murray, and made by Fenton, Murray and Wood of Holbeck, Leeds, it is one of only two of the type to survive; [3] the other is located at The Henry Ford, Michigan, United States.
In geometry, a deltoid curve, also known as a tricuspoid curve or Steiner curve, is a hypocycloid of three cusps.In other words, it is the roulette created by a point on the circumference of a circle as it rolls without slipping along the inside of a circle with three or one-and-a-half times its radius.
The Tusi couple is a 2-cusped hypocycloid. The couple was first proposed by the 13th-century Persian astronomer and mathematician Nasir al-Din al-Tusi in his 1247 Tahrir al-Majisti (Commentary on the Almagest) as a solution for the latitudinal motion of the inferior planets [ 4 ] and later used extensively as a substitute for the equant ...
Construction of a two-lobed cycloidal rotor. The red curve is an epicycloid and the blue curve is a hypocycloid. A Roots blower is one extreme, a form of cycloid gear where the ratio of the pitch diameter to the generating circle diameter equals twice the number of lobes. In a two-lobed blower, the generating circle is one-fourth the diameter ...
Cycloid - curve generated by a rotating point on a wheel Epitrochoid - Wheel rotating around a wheel . In the differential geometry of curves, a roulette is a kind of curve, generalizing cycloids, epicycloids, hypocycloids, trochoids, epitrochoids, hypotrochoids, and involutes.
The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).. In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle.