enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 4-manifold - Wikipedia

    en.wikipedia.org/wiki/4-manifold

    For manifolds of dimension at most 6, any piecewise linear (PL) structure can be smoothed in an essentially unique way, [2] so in particular the theory of 4 dimensional PL manifolds is much the same as the theory of 4 dimensional smooth manifolds. A major open problem in the theory of smooth 4-manifolds is to classify the simply connected ...

  3. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    Important to applications in mathematics and physics [1] is the notion of a flow on a manifold. In particular, if M {\displaystyle M} is a smooth manifold and X {\displaystyle X} is a smooth vector field , one is interested in finding integral curves to X {\displaystyle X} .

  4. Contact geometry - Wikipedia

    en.wikipedia.org/wiki/Contact_geometry

    Suppose that H is a smooth function on T*N, that E is a regular value for H, so that the level set = {(,) (,) =} is a smooth submanifold of codimension 1. A vector field Y is called an Euler (or Liouville) vector field if it is transverse to L and conformally symplectic, meaning that the Lie derivative of dλ with respect to Y is a multiple of ...

  5. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  6. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    Such a manifold is called differentiable. Given a differentiable manifold, one can unambiguously define the notion of tangent vectors and then directional derivatives. If each transition function is a smooth map, then the atlas is called a smooth atlas, and the manifold itself is called smooth.

  7. Differential topology - Wikipedia

    en.wikipedia.org/wiki/Differential_topology

    In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.

  8. Distribution (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(differential...

    Let be a smooth manifold; a (smooth) distribution assigns to any point a vector subspace in a smooth way. More precisely, consists of a collection {} of vector subspaces with the following property: Around any there exist a neighbourhood and a collection of vector fields, …, such that, for any point , span {(), …, ()} =.

  9. Diffeology - Wikipedia

    en.wikipedia.org/wiki/Diffeology

    Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds (also called smooth manifolds) generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the ...