enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum rules (quantum field theory) - Wikipedia

    en.wikipedia.org/wiki/Sum_rules_(quantum_field...

    In quantum field theory, a sum rule is a relation between a static quantity and an integral over a dynamical quantity. Therefore, they have a form such as: =where () is the dynamical quantity, for example a structure function characterizing a particle, and is the static quantity, for example the mass or the charge of that particle.

  3. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    The technique of the previous example may also be applied to other Dirichlet series. If a n = μ ( n ) {\displaystyle a_{n}=\mu (n)} is the Möbius function and ϕ ( x ) = x − s {\displaystyle \phi (x)=x^{-s}} , then A ( x ) = M ( x ) = ∑ n ≤ x μ ( n ) {\displaystyle A(x)=M(x)=\sum _{n\leq x}\mu (n)} is Mertens function and

  4. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Instead, such a series must be interpreted by zeta function regularization. For this reason, Hardy recommends "great caution" when applying the Ramanujan sums of known series to find the sums of related series. [16]

  5. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  6. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  7. Operator product expansion - Wikipedia

    en.wikipedia.org/wiki/Operator_product_expansion

    In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. [1] As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been used to construct two-dimensional conformal field theories ...

  8. Euler summation - Wikipedia

    en.wikipedia.org/wiki/Euler_summation

    In the mathematics of convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original ...

  9. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.