Search results
Results from the WOW.Com Content Network
In mathematics, the replicator equation is a deterministic monotone non-linear and non-innovative game dynamic used in evolutionary game theory. [1] The replicator equation differs from other equations used to model replication, such as the quasispecies equation, in that it allows the fitness function to incorporate the distribution of the population types rather than setting the fitness of a ...
where a 1 = 0.0705230784, a 2 = 0.0422820123, a 3 = 0.0092705272, a 4 = 0.0001520143, a 5 = 0.0002765672, a 6 = 0.0000430638 erf x ≈ 1 − ( a 1 t + a 2 t 2 + ⋯ + a 5 t 5 ) e − x 2 , t = 1 1 + p x {\displaystyle \operatorname {erf} x\approx 1-\left(a_{1}t+a_{2}t^{2}+\cdots +a_{5}t^{5}\right)e^{-x^{2}},\quad t={\frac {1}{1+px ...
The function T(h, a) gives the probability of the event (X > h and 0 < Y < aX) where X and Y are independent standard normal random variables. This function can be used to calculate bivariate normal distribution probabilities [2] [3] and, from there, in the calculation of multivariate normal distribution probabilities. [4]
P-Values: The p-value is a measure of the probability that the observed data would occur by chance if the null hypothesis were true. In replication studies p-values help us determine whether the findings can be consistently replicated. A low p-value in a replication study indicates that the results are not likely due to random chance. [6]
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
If Y has a half-normal distribution, then (Y/σ) 2 has a chi square distribution with 1 degree of freedom, i.e. Y/σ has a chi distribution with 1 degree of freedom. The half-normal distribution is a special case of the generalized gamma distribution with d = 1, p = 2, a = . If Y has a half-normal distribution, Y-2 has a Lévy distribution