Search results
Results from the WOW.Com Content Network
Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: = +, = +, where the subscript i refers to the initial displacement (at time t equal to zero).
In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame. The speed of light in a perfect classical vacuum ( c 0 {\displaystyle c_{0}} ) is measured to be the same by all observers in inertial frames and is, moreover, finite ...
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c.
That is, special relativity gives the correct velocity-addition formula for computing such relative velocity. It is instructive to compute the relative velocity of particles moving at v and −v in accelerator frame, which corresponds to the closing speed of 2v > c. Expressing the speeds in units of c, β = v/c:
The COR is a property of a pair of objects in a collision, not a single object. If a given object collides with two different objects, each collision has its own COR. When a single object is described as having a given coefficient of restitution, as if it were an intrinsic property without reference to a second object, some assumptions have been made – for example that the collision is with ...
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
By contrast, subtracting equation (2) from equation (1) results in an equation that describes how the vector r = x 1 − x 2 between the masses changes with time. The solutions of these independent one-body problems can be combined to obtain the solutions for the trajectories x 1 (t) and x 2 (t).
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.