Search results
Results from the WOW.Com Content Network
The harmonic oscillator model is very important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits. They are the source of virtually all sinusoidal ...
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...
In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the fundamental frequency of a periodic signal. The fundamental frequency is also called the 1st harmonic ; the other harmonics are known as higher harmonics .
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function:, where U is an open subset of , that satisfies Laplace's equation, that is, + + + = everywhere on U.
The Schrödinger equation for a particle in a spherically-symmetric three-dimensional harmonic oscillator can be solved explicitly by separation of variables. This procedure is analogous to the separation performed in the hydrogen-like atom problem, but with a different spherically symmetric potential V ( r ) = 1 2 μ ω 2 r 2 , {\displaystyle ...
Harmonic motion can mean: the displacement of the particle executing oscillatory motion that can be expressed in terms of sine or cosine functions known as harmonic motion . The motion of a Harmonic oscillator (in physics), which can be: Simple harmonic motion; Complex harmonic motion
These equations represent the simple harmonic motion of the pendulum with an added coupling factor of the spring. [1] This behavior is also seen in certain molecules (such as CO 2 and H 2 O), wherein two of the atoms will vibrate around a central one in a similar manner. [1]
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.