Search results
Results from the WOW.Com Content Network
A special class of cellular automata are totalistic cellular automata. The state of each cell in a totalistic cellular automaton is represented by a number (usually an integer value drawn from a finite set), and the value of a cell at time t depends only on the sum of the values of the cells in its neighborhood (possibly including the cell ...
Initially, much of the cell-space, the universe of the cellular automaton, is "blank", consisting of cells in the ground state U. When given an input excitation from a neighboring ordinary- or special transmission state, the cell in the ground state becomes "sensitised", transitioning through a series of states before finally "resting" at a ...
The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life .
A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.
If we view the two states as Boolean values, this correspondence between ordinary and second-order automaton can be described simply: the state of a cell of the second-order automaton at time t + 1 is the exclusive or of its state at time t − 1 with the state that the ordinary cellular automaton rule would compute for it. [4]
A block cellular automaton or partitioning cellular automaton is a special kind of cellular automaton in which the lattice of cells is divided into non-overlapping blocks (with different partitions at different time steps) and the transition rule is applied to a whole block at a time rather than a single cell. Block cellular automata are useful ...
In Conway's Game of Life, oscillators had been identified and named as early as 1971. [1] Since then it has been shown that finite oscillators exist for all periods. [2] [3] [4] Additionally, until July 2022, the only known examples for period 34 were considered trivial because they consisted of essentially separate components that oscillate at smaller periods.
Codd's cellular automaton is a cellular automaton (CA) devised by the British computer scientist Edgar F. Codd in 1968. It was designed to recreate the computation- and construction-universality of von Neumann's CA but with fewer states: 8 instead of 29.