Search results
Results from the WOW.Com Content Network
Phenylacetaldehyde is an aldehyde that consists of acetaldehyde bearing a phenyl substituent; the parent member of the phenylacetaldehyde class of compounds. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite.
[3] [4] In both species, it is subsequently metabolized into 4-hydroxyphenylacetate by aldehyde dehydrogenase (ALDH) enzymes in humans and the phenylacetaldehyde dehydrogenase (feaB) enzyme in E. coli. [3] [4] [5] The condensation of 4-hydroxyphenylacetaldehyde and dopamine is a key step in the biosynthesis of benzylisoquinoline alkaloids.
Each precursor material is examined using the same method. This procedure is repeated until simple or commercially available structures are reached. These simpler/commercially available compounds can be used to form a synthesis of the target molecule. Retrosynthetic analysis was used as early as 1917 in Robinson's Tropinone total synthesis. [1]
Most often, each step in a synthesis is a separate reaction taking place to modify the starting materials. For more complex molecules, a convergent synthetic approach may be better suited. This type of reaction scheme involves the individual preparations of several key intermediates, which are then combined to form the desired product.
The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone (also known as an azlactone). [1] [2] Azlactone chemistry: step 2 is a Perkin variation
A typical experimental setup for an aldol reaction in a research laboratory. The flask on the right is a solution of lithium diisopropylamide (LDA) in tetrahydrofuran (THF). The flask on the left is a solution of the lithium enolate of tert-butyl propionate (formed by addition of LDA to tert-butyl propionate). An aldehyde can then be added to ...
In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes (R−CH=O) from alkenes (R 2 C=CR 2). [ 1 ] [ 2 ] This chemical reaction entails the net addition of a formyl group ( −CHO ) and a hydrogen atom to a carbon-carbon double bond .
The Stanford Research Institute Problem Solver, known by its acronym STRIPS, is an automated planner developed by Richard Fikes and Nils Nilsson in 1971 at SRI International. [1] The same name was later used to refer to the formal language of the inputs to this planner.