enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    The Frobenius norm is an extension of the Euclidean norm to and comes from the Frobenius inner product on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. The sub-multiplicativity of Frobenius norm can be proved using Cauchy–Schwarz inequality.

  3. Frobenius normal form - Wikipedia

    en.wikipedia.org/wiki/Frobenius_normal_form

    The Frobenius normal form does not reflect any form of factorization of the characteristic polynomial, even if it does exist over the ground field F. This implies that it is invariant when F is replaced by a different field (as long as it contains the entries of the original matrix A ).

  4. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar.It is often denoted , .The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product.

  5. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    The norm derived from this inner product is called the Frobenius norm, and it satisfies a submultiplicative property, as can be proven with the Cauchy–Schwarz inequality: [⁡ ()] ⁡ ⁡ , if A and B are real matrices such that A B is a square matrix.

  6. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    One example is the squared Frobenius norm, which can be viewed as an -norm acting either entrywise, or on the singular values of the matrix: = ‖ ‖ = | | = ⁡ =. In the multivariate case the effect of regularizing with the Frobenius norm is the same as the vector case; very complex models will have larger norms, and, thus, will be penalized ...

  7. Dual norm - Wikipedia

    en.wikipedia.org/wiki/Dual_norm

    The Frobenius norm defined by ‖ ‖ = = = | | = ⁡ = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...

  8. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    where [] is the augmented matrix with E and F side by side and ‖ ‖ is the Frobenius norm, the square root of the sum of the squares of all entries in a matrix and so equivalently the square root of the sum of squares of the lengths of the rows or columns of the matrix. This can be rewritten as

  9. Frobenius norm - Wikipedia

    en.wikipedia.org/?title=Frobenius_norm&redirect=no

    Matrix norm#Frobenius norm To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .