Search results
Results from the WOW.Com Content Network
One computational method which can be used to calculate IV estimates is two-stage least squares (2SLS or TSLS). In the first stage, each explanatory variable that is an endogenous covariate in the equation of interest is regressed on all of the exogenous variables in the model, including both exogenous covariates in the equation of interest and ...
The elimination rate constant K or K e is a value used in pharmacokinetics to describe the rate at which a drug is removed from the human system. [1] It is often abbreviated K or K e. It is equivalent to the fraction of a substance that is removed per unit time measured at any particular instant and has units of T −1.
In pharmacokinetics, a loading dose is an initial higher dose of a drug that may be given at the beginning of a course of treatment before dropping down to a lower maintenance dose. [1] A loading dose is most useful for drugs that are eliminated from the body relatively slowly, i.e. have a long systemic half-life.
In practice, the drug concentration is measured at certain discrete points in time and the trapezoidal rule is used to estimate AUC. In pharmacology, the area under the plot of plasma concentration of a drug versus time after dosage (called “area under the curve” or AUC) gives insight into the extent of exposure to a drug and its clearance ...
It is the fraction of exposure to a drug (AUC) through non-intravenous administration compared with the corresponding intravenous administration of the same drug. [17] The comparison must be dose normalized (e.g., account for different doses or varying weights of the subjects); consequently, the amount absorbed is corrected by dividing the ...
Pharmacokinetics is based on mathematical modeling that places great emphasis on the relationship between drug plasma concentration and the time elapsed since the drug's administration. Pharmacokinetics is the study of how an organism affects the drug, whereas pharmacodynamics (PD) is the study of
Clearance of a substance is sometimes expressed as the inverse of the time constant that describes its removal rate from the body divided by its volume of distribution (or total body water). In steady-state, it is defined as the mass generation rate of a substance (which equals the mass removal rate) divided by its concentration in the blood.
Drug administration via the nasal cavity yields rapid drug absorption and therapeutic effects. [33] This is because drug absorption through the nasal passages does not go through the gut before entering capillaries situated at tissue cells and then systemic circulation and such absorption route allows transport of drugs into the central nervous ...