enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan–Petersson conjecture - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Petersson...

    Furthermore, we can concretely calculate the dimension of the space of holomorphic modular forms, using the Riemann–Roch theorem (see the dimensions of modular forms). Deligne (1971) used the Eichler–Shimura isomorphism to reduce the Ramanujan conjecture to the Weil conjectures that he later proved.

  3. Modular form - Wikipedia

    en.wikipedia.org/wiki/Modular_form

    A modular form for G of weight k is a function on H satisfying the above functional equation for all matrices in G, that is holomorphic on H and at all cusps of G. Again, modular forms that vanish at all cusps are called cusp forms for G. The C-vector spaces of modular and cusp forms of weight k are denoted M k (G) and S k (G), respectively.

  4. Mock modular form - Wikipedia

    en.wikipedia.org/wiki/Mock_modular_form

    In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight ⁠ 1 / 2 ⁠. The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his lost notebook .

  5. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    The web of modularity: arithmetic of the coefficients of modular forms and q-series. CBMS Regional Conference Series in Mathematics. Vol. 102. Providence, RI: American Mathematical Society. ISBN 978-0-8218-3368-1. Zbl 1119.11026. Ramanujan, S. (1919). "Some properties of p(n), the number of partitions of n".

  6. Ramanujan–Sato series - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Sato_series

    In mathematics, a Ramanujan–Sato series [1] [2] generalizes Ramanujan’s pi formulas such as, = = ()!! + to the form = = + by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients (), and ,, employing modular forms of higher levels.

  7. Hecke operator - Wikipedia

    en.wikipedia.org/wiki/Hecke_operator

    In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by Erich Hecke (1937a,1937b), is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic representations.

  8. ‘12 Badass Women’ by Huffington Post

    testkitchen.huffingtonpost.com/badass-women

    Victoria Woodhull was the first woman to run for president in the U.S. and she made her historic run in 1872 – before women even had the right to vote! She supported women's suffrage as well as welfare for the poor, and though it was frowned upon at the time, she didn't shy away from being vocal about sexual freedom.

  9. Cusp form - Wikipedia

    en.wikipedia.org/wiki/Cusp_form

    For example, the Ramanujan tau function τ(n) arises as the sequence of Fourier coefficients of the cusp form of weight 12 for the modular group, with a 1 = 1. The space of such forms has dimension 1, which means this definition is possible; and that accounts for the action of Hecke operators on the space being by scalar multiplication (Mordell ...