Search results
Results from the WOW.Com Content Network
The C 2 benzenes are a class of organic aromatic compounds which contain a benzene ring and two other carbon atoms. For the hydrocarbons with no further unsaturation, there are four isomers. There are three xylenes and one ethylbenzene .
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
[1] [2] Simple aromatic rings can be heterocyclic if they contain non-carbon ring atoms, for example, oxygen, nitrogen, or sulfur. They can be monocyclic as in benzene, bicyclic as in naphthalene, or polycyclic as in anthracene. Simple monocyclic aromatic rings are usually five-membered rings like pyrrole or six-membered rings like pyridine.
Simple aromatic rings are aromatic organic compounds (also known as arenes or aromatics) that consist only of conjugated planar ring systems with delocalized pi electron clouds instead of discrete alternating single and double bonds. Typical simple aromatic compounds are benzene and indole.
Benzopyran is a polycyclic organic compound that results from the fusion of a benzene ring to a heterocyclic pyran ring.. According to current IUPAC nomenclature, the name chromene used in previous recommendations is retained; however, systematic ‘benzo’ names, for example 2H-1-benzopyran, are preferred IUPAC names for chromene, isochromene, chromane, isochromane, and their chalcogen ...
Hexacene is an aromatic compound consisting of six linearly-fused benzene rings. It is a blue-green, air-stable solid with low solubility. [1]Hexacene is one of a series of linear polycyclic molecules created by such aromatic ring fusions, a series termed acenes; the previous in the series is pentacene (with five fused rings) and the next is heptacene (with seven).
The Buchner ring expansion reaction was first used in 1885 by Eduard Buchner and Theodor Curtius [1] [2] who prepared a carbene from ethyl diazoacetate for addition to benzene using both thermal and photochemical pathways in the synthesis of cycloheptatriene derivatives. The resulting product was a mixture of four isomeric carboxylic acids ...
The term benzylic is used to describe the position of the first carbon bonded to a benzene or other aromatic ring. For example, (C 6 H 5 )(CH 3 ) 2 C + is referred to as a "benzylic" carbocation. The benzyl free radical has the formula C 6 H 5 CH 2 • .