Search results
Results from the WOW.Com Content Network
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
Classification, face recognition 2011 [91] [92] M. Grgic et al. Yale Face Database Faces of 15 individuals in 11 different expressions. Labels of expressions. 165 Images Face recognition 1997 [93] [94] J. Yang et al. Cohn-Kanade AU-Coded Expression Database Large database of images with labels for expressions. Tracking of certain facial features.
Celebrity recognition in images [3] [4]; Facial attribute detection in images, including gender, age range, emotions (e.g. happy, calm, disgusted), whether the face has a beard or mustache, whether the face has eyeglasses or sunglasses, whether the eyes are open, whether the mouth is open, whether the person is smiling, and the location of several markers such as the pupils and jaw line.
DeepFace is a deep learning facial recognition system created by a research group at Facebook. It identifies human faces in digital images. It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.
Learning-based fitting methods use machine learning techniques to predict the facial coefficients. These can use linear regression, nonlinear regression and other fitting methods. [6] In general, the analytic fitting methods are more accurate and do not need training, while the learning-based fitting methods are faster, but need to be trained. [7]
Automatic face detection with OpenCV. Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. [1] Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene. [2]
Real-time face detection in video footage became possible in 2001 with the Viola–Jones object detection framework for faces. [28] Paul Viola and Michael Jones combined their face detection method with the Haar-like feature approach to object recognition in digital images to launch AdaBoost, the first real-time frontal-view face detector. [29]