enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heterozygote advantage - Wikipedia

    en.wikipedia.org/wiki/Heterozygote_advantage

    A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. [1] The specific case of heterozygote advantage due to a single locus is known as overdominance.

  3. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    Incomplete dominance is when the dominant allele and recessive allele come together to form a blend of the two phenotypes in the offspring. Test crosses are also not applicable with codominant genes, where both phenotypes of a heterozygote trait will be expressed.

  4. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    Offspring of the males with the trait don't inherit the trait. Offspring of the females with the trait always inherit the trait (independently from their own sex). Extranuclear inheritance (also known as cytoplasmic inheritance) is a form of non-Mendelian inheritance also first discovered by Carl Correns in 1908. [9]

  5. Compound heterozygosity - Wikipedia

    en.wikipedia.org/wiki/Compound_heterozygosity

    In medical genetics, compound heterozygosity is the condition of having two or more heterogeneous recessive alleles at a particular locus that can cause genetic disease in a heterozygous state; that is, an organism is a compound heterozygote when it has two recessive alleles for the same gene, but with those two alleles being different from each other (for example, both alleles might be ...

  6. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    Alternatively, a heterozygote for gene "R" is assumed to be "Rr". The uppercase letter is usually written first. [citation needed] If the trait in question is determined by simple (complete) dominance, a heterozygote will express only the trait coded by the dominant allele, and the trait coded by the recessive allele will not be present.

  7. Underdominance - Wikipedia

    en.wikipedia.org/wiki/Underdominance

    In genetics, underdominance, also known as homozygote advantage, heterozygote disadvantage, or negative overdominance," [1] is the opposite of overdominance. It is the selection against the heterozygote , causing disruptive selection [ 2 ] and divergent genotypes .

  8. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    Since dominant traits mask recessive traits (assuming no epistasis), there are nine combinations that have the phenotype round yellow, three that are round green, three that are wrinkled yellow, and one that is wrinkled green. The ratio 9:3:3:1 is the expected outcome when crossing two double-heterozygous parents with unlinked genes.

  9. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    The phenotypic ratio of a cross between two heterozygotes is 9:3:3:1, where 9/16 of the individuals possess the dominant phenotype for both traits, 3/16 of the individuals possess the dominant phenotype for one trait, 3/16 of the individuals possess the dominant phenotype for the other trait, and 1/16 are recessive for both traits. [1]