Search results
Results from the WOW.Com Content Network
The refractive index of materials varies with the wavelength (and frequency) of light. [27] This is called dispersion and causes prisms and rainbows to divide white light into its constituent spectral colors. [28] As the refractive index varies with wavelength, so will the refraction angle as light goes from one material to another.
Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1.Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.
Young [6] [11] distinguished several regions where different methods for calculating astronomical refraction were applicable. In the upper portion of the sky, with a zenith distance of less than 70° (or an altitude over 20°), various simple refraction formulas based on the index of refraction (and hence on the temperature, pressure, and humidity) at the observer are adequate.
Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1. Since the phase velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.
A refractometer is a laboratory or field device for the measurement of an index of refraction (refractometry). The index of refraction is calculated from the observed refraction angle using Snell's law. For mixtures, the index of refraction then allows the concentration to be determined using mixing rules such as the Gladstone–Dale relation ...
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who originally defined it in 1830 in his article "The refraction and reflection of light". [1]
The different angles of refraction for the two polarization components are shown in the figure at the top of this page, with the optic axis along the surface (and perpendicular to the plane of incidence), so that the angle of refraction is different for the p polarization (the "ordinary ray" in this case, having its electric vector ...
Here the coefficient A is an approximation of the short-wavelength (e.g., ultraviolet) absorption contributions to the refractive index at longer wavelengths. Other variants of the Sellmeier equation exist that can account for a material's refractive index change due to temperature, pressure, and other parameters.