Search results
Results from the WOW.Com Content Network
The butterfly compound eye consists of multiple ommatidia, each of which consist of nine photoreceptor cells (numbered from R1–R9), and primary and secondary pigment cells. [5] Nymphalid butterflies have the simplest eye ommatidium structure, consisting of eight photoreceptor cells (R1–R8) and a tiny R9 cell organized into a different tier.
The visual system is the physiological basis of visual perception (the ability to detect and process light).The system detects, transduces and interprets information concerning light within the visible range to construct an image and build a mental model of the surrounding environment.
A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction.The great biological importance of photoreceptors is that they convert light (visible electromagnetic radiation) into signals that can stimulate biological processes.
Visual phototransduction is the sensory transduction process of the visual system by which light is detected by photoreceptor cells (rods and cones) in the vertebrate retina.A photon is absorbed by a retinal chromophore (each bound to an opsin), which initiates a signal cascade through several intermediate cells, then through the retinal ganglion cells (RGCs) comprising the optic nerve.
Photoreceptor can refer to: . In anatomy/cell biology: Photoreceptor cell, a photosensitive cell in the retina of vertebrate eyes; Simple eye in invertebrates (Ocellus), photoreceptor organ ("simple eye") of invertebrates often composed of a few sensory cells and a single lens
Most sensory systems have a quiescent state, that is, the state that a sensory system converges to when there is no input. [citation needed] This is well-defined for a linear time-invariant system, whose input space is a vector space, and thus by definition has a point of zero. It is also well-defined for any passive sensory system, that is, a ...
The human eye is a sensory organ in the visual system that reacts to visible light allowing eyesight. Other functions include maintaining the circadian rhythm, and keeping balance. Arizona Eye Model. "A" is accommodation in diopters. The eye can be considered as a living optical device.
Unlike other sensory systems, the topography in the olfactory system is not dependent on spatial properties of the stimuli. Relieved of the requirement to map the position of an olfactory stimulus in space, the olfactory system employs spatial segregation of sensory input to encode the quality of an odorant. [7]