Search results
Results from the WOW.Com Content Network
An animation of a frequency divider implemented with D flip-flops, counting from 0 to 7 in binary. For power-of-2 integer division, a simple binary counter can be used, clocked by the input signal. The least-significant output bit alternates at 1/2 the rate of the input clock, the next bit at 1/4 the rate, the third bit at 1/8 the rate, etc.
A multivibrator is an electronic circuit used to implement a variety of simple two-state [1] [2] [3] devices such as relaxation oscillators, timers, latches and flip-flops.The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I.
When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator (latch or flip-flop). There is a close relation ...
A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same, thus a phase-locked loop can also track an input frequency.
The term flip-flop has historically referred generically to both level-triggered (asynchronous, transparent, or opaque) and edge-triggered (synchronous, or clocked) circuits that store a single bit of data using gates. [1] Modern authors reserve the term flip-flop exclusively for edge-triggered storage elements and latches for level-triggered ones.
A frequency synthesizer may use the techniques of frequency multiplication, frequency division, direct digital synthesis, frequency mixing, and phase-locked loops to generate its frequencies. The stability and accuracy of the frequency synthesizer's output are related to the stability and accuracy of its reference frequency input.
A standard LFSR has a single XOR or XNOR gate, where the input of the gate is connected to several "taps" and the output is connected to the input of the first flip-flop. A MISR has the same structure, but the input to every flip-flop is fed through an XOR/XNOR gate. For example, a 4-bit MISR has a 4-bit parallel output and a 4-bit parallel input.
The output from that is fed into a second flip-flop, and so on through a chain of 15 flip-flops, each of which acts as an effective power of 2 frequency divider by dividing the frequency of the input signal by 2.