Search results
Results from the WOW.Com Content Network
In materials science, lamellar structures or microstructures are composed of fine, alternating layers of different materials in the form of lamellae. They are often observed in cases where a phase transition front moves quickly, leaving behind two solid products, as in rapid cooling of eutectic (such as solder ) or eutectoid (such as pearlite ...
A lamella (pl.: lamellae) is a small plate or flake, from the Latin, and may also refer to collections of fine sheets of material held adjacent to one another in a gill-shaped structure, often with fluid in between though sometimes simply a set of "welded" plates.
A lamella (pl.: lamellae) in biology refers to a thin layer, membrane or plate of tissue. [1] This is a very broad definition, and can refer to many different structures. Any thin layer of organic tissue can be called a lamella and there is a wide array of functions an individual layer can serve.
Lamella (surface anatomy), a plate-like structure in an animal; Lamella of osteon, the concentric circles around the central Haversian canals; Lamella (cell biology): (i) part of a chloroplast (thin extension of thylakoid joining different grana) (ii) the leading edge of motile cells, containing the lamellipodia
In surface anatomy, a lamella is a thin plate-like structure, often one amongst many lamellae very close to one another, with open space between. Aside from respiratory organs, they appear in other biological roles including filter feeding and the traction surfaces of geckos. [1]
In lamellar lipid bilayers, polar headgroups of lipids align together at the interface of water and hydrophobic fatty-acid acyl chains align parallel to one another 'hiding away' from water. The lipid head groups are somewhat more 'tightly' packed than relatively 'fluid' hydrocarbon fatty acyl long chains.
The structure of isotactic polypropylene. The structure of atactic polypropylene. Whether or not polymers can crystallize depends on their molecular structure – presence of straight chains with regularly spaced side groups facilitates crystallization. For example, crystallization occurs much easier in isotactic than in the atactic ...
In lipid polymorphism, if the packing ratio [clarification needed] of lipids is greater or less than one, lipid membranes can form two separate hexagonal phases, or nonlamellar phases, in which long, tubular aggregates form according to the environment in which the lipid is introduced.