Ad
related to: ideal diode current equation
Search results
Results from the WOW.Com Content Network
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
The Shockley ideal diode equation or the diode law (named after the bipolar junction transistor co-inventor William Bradford Shockley) models the exponential current–voltage (I–V) relationship of diodes in moderate forward or reverse bias. The article Shockley diode equation provides details.
The Shockley ideal diode equation characterizes the current across a p–n junction as a function of external voltage and ambient conditions (temperature, choice of semiconductor, etc.). To see how it can be derived, we must examine the various reasons for current.
Nonideal p–n diode current-voltage characteristics. The ideal diode has zero resistance for the forward bias polarity, and infinite resistance (conducts zero current) for the reverse voltage polarity; if connected in an alternating current circuit, the semiconductor diode acts as an electrical rectifier.
By the Shockley diode equation, the current diverted through the diode is: = { []} [7] where I 0, reverse saturation current; n, diode ideality factor (1 for an ideal diode) q, elementary charge; k, Boltzmann constant
Obviously, that's not an ideal strategy, but in this hypothetical scenario, I know what stock I would choose: Amazon (NASDAQ: AMZN). Here's why. A jar of $100 bills on a wooden table.
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.
Ad
related to: ideal diode current equation